Homework #12 Solutions


Reminder - you may need these webpages: http://www.continuummechanics.org/cm/techforms/index.html to do this homework.


  1. Start with the following equation from the Navier-Stokes page

    \[ \rho \, \left( {\partial {\bf v} \over \partial t} + {\bf v} \cdot \nabla {\bf v} \right) = -\nabla P + 2 \mu \nabla \cdot {\bf D}' + \rho {\bf f} \]
    and use tensor notation to show how to get to the equation below, which occurs farther down the page.

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + 2 \, \mu \, D'_{ij,j} + \rho f_i \]
    Substitute \(D_{ij,j} - {1 \over 3} \delta_{ij} D_{kk,j}\) for \(D'_{ij,j}\).

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + 2 \, \mu \, \left( D_{ij,j} - {1 \over 3} \delta_{ij} D_{kk,j} \right) + \rho f_i \]
    Expand out and swap out \(\delta_{ij}\).

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + 2 \, \mu \, D_{ij,j} - {2 \over 3} \mu \, D_{kk,i} + \rho f_i \]
    Replace \(D_{ij}\) with \({1 \over 2} (v_{i,j} + v_{j,i})\), and replace \(D_{kk}\) with \(v_{k,k}\).

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + \mu \, (v_{i,jj} + v_{j,ij}) - {2 \over 3} \mu \, v_{k,ki} + \rho f_i \]
    But \(v_{j,ij}\) and \(v_{k,ki}\) are the same thing, so combine to get

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + \mu \, v_{i,jj} + {1 \over 3} \mu \, v_{j,ji} + \rho f_i \]
    But \(v_{j,ji}\) is the same thing as \((v_{j,j}),_i\) and for incompressible materials, \(v_{j,j}\) is zero. So this term drops out to give

    \[ \rho \, \left( v_{i,t} + v_k v_{i,k} \right) = -P,_x + \mu \, v_{i,jj} + \rho f_i \]
    which can be written in matrix notation as

    \[ \rho \, \left( {\partial {\bf v} \over \partial t} + {\bf v} \cdot \nabla {\bf v} \right) = -\nabla P + \mu \nabla^2 {\bf v} + \rho \, {\bf f} \]


  2. The (made up) test data below is for tension tests of a rubber sample at two temperatures. Propose a Helmholtz function in terms of strain and temperature and show that it reproduces the measured data. (Note - The Helmholtz function must be a function of temperature in Kelvin, not Celsius.)





    27°C77°C
    StrainStress (MPa)Stress (MPa)
    000
    0.050.30.2
    0.100.70.4
    0.151.00.7
    0.201.50.8
    0.251.81.1
    0.302.51.6
    0.353.01.9
    0.403.52.4
    0.454.22.9
    0.504.93.3
    0.555.73.8
    0.606.74.3
    0.657.54.9
    0.708.55.5
    0.759.46.2
    0.8010.46.9
    0.8511.57.6
    0.9012.78.4



    Propose the following function for the Helmholtz free energy.

    \[ \Psi = { \text{20E6} \, \epsilon^2 + \text{30E6} \, \epsilon^3 \over T^{2.8} } \]
    Keep in mind that temperature must be in Kelvin, use 300K and 350K.

    Take the derivative to get

    \[ \sigma = {\partial \Psi \over \partial \epsilon} = { \text{40E6} \, \epsilon + \text{90E6} \, \epsilon^2 \over T^{2.8} } \]
    Plot this on the graph.